最新 | 最热门 | 最高评价

+0  寻找相邻两项之比不趋于 1.618 的广义 Fibonacci 数列

Tag: 数列 | 抽象代数 | 线性代数 | Uncategorized | 趣题 | 证明
admin 发于 2014年08月14日 20:18 | 点击: 1729 | 展开摘要
大家或许知道 Fibonacci 数列 1, 1, 2, 3, 5, 8, … 有一个非常漂亮的性质:数列中的相邻两项之比将会越来越接近黄金比例 (1 + √5) / 2 ≈ 1.618 。事实上,如果我们用 F(n) 来表示第 n 个 Fibonacci 数的话,那么当 n → ∞ 时,我们有 F(n + 1) / F(n) → (1 + √5) / 2 。

不过,可能有人并不知道,如果把 Fibonacci 数列的前两项换成两个其他的正整数(但保持 Fibonacci

查看全文: http://www.udpwork.com/item/13117.html

+0  线性代数的妙用:怎样在Windows画图软件中实现28度旋转?

Tag: 线性代数 | 动画 | Brain Storm | 算法 | 趣题
Matrix67 发于 2013年08月25日 02:56 | 点击: 1264 | 展开摘要
    在早期的小型图像编辑软件中,考虑到时间空间的限制,再加上算法本身的难度,很多看似非常简单的功能都无法实现。比如说,很多图像编辑软件只允许用户把所选的内容旋转 90 度、 180 度或者 270 度,不支持任意度数的旋转。毕竟,如果我们只是旋转 90 度的整数倍,那么所有像素仅仅是在做某些有规律的轮换,这甚至不需要额外的内存空间就能完成。但是,如果旋转别的度数,那么在采样和反锯齿等方面都将会有不小的挑战。

  

查看全文: http://www.udpwork.com/item/10498.html

+0  趣题:选出最多的大小为奇数的子集,使得两两的交集大小都是偶数

Tag: 趣题 | Brain Storm | 证明 | 组合数学 | 线性代数
Matrix67 发于 2011年11月16日 13:11 | 点击: 1821 | 展开摘要
    在集合 {1, 2, ..., n} 中选出尽可能多的子集,使得每个子集所含的元素个数都是奇数,但是任意两个子集的交集都含有偶数个元素。那么,我们最多能够选出多少个这样的子集来?

    容易看出,我们至少可以选出 n 个子集。例如,当 n = 4 时, {1} 、 {2} 、 {3} 、 {4} 就满足要求。我们还能选出更多的子集来吗?简单地尝试后,你会觉得似乎不行。不过,这却并不是显

查看全文: http://www.udpwork.com/item/6291.html

+0  UyHiP趣题:按照盒子的三边长之和来计费有没有漏洞?

Tag: 趣题 | Brain Storm | 几何 | 证明 | 线性代数
Matrix67 发于 2011年11月03日 22:13 | 点击: 1438 | 展开摘要
    今天的趣题来自 UyHiP 今年十月的趣题。

    许多快递公司都依据物件的长、宽、高三边之和来收费,一些航空公司也要求托运行李的三边长相加不能超过某个限制。那么是否有人想过,有没有可能把一个三边之和较大的盒子装进一个三边之和较小的盒子里,从而骗取更低的费用呢?有人会说,恐怕不行吧,长宽高之和更大的盒子体积不也应该更大一些吗?不见得。比方说,盒子 A 的长宽高分别是 10 、 10 、

查看全文: http://www.udpwork.com/item/6199.html

+0  趣题:不动点与线性代数

Tag: 趣题 | Brain Storm | 函数 | 证明 | 线性代数
Matrix67 发于 2011年05月02日 23:27 | 点击: 2077 | 展开摘要
    假设 X 、 Y 是两个有限集合,f:X→Y 和 g:Y→X 是两个函数。求证:复合函数 g∘f 和 f∘g 拥有相同数量的不动点(也就是说 g(f(x)) = x 和 f(g(y)) = y 的解的个数相同)。

    下面先提供一个“正常”的解法。观察函数 g∘f 的不动点,可以看出它有以下两个性质:首先,如果某个 x 是 g∘f 的不动点,即 x = g(f(x)) ,那么 f(x

查看全文: http://www.udpwork.com/item/4971.html
|<<<1>>>| 一共1页, 5条记录