最新 | 最热门 | 最高评价

+0  45 道 Bongard 问题:寻找图形分类的依据

Tag: 游戏 |  图形 | Uncategorized | 趣题
admin 发于 2014年09月23日 19:20 | 点击: 1779 | 展开摘要
如果让你设计一种用于人工智能测试的谜题,你会怎么设计?俄国计算机科学家 Mikhail Moiseevich Bongard 在 1967 年出版的 Проблема Узнавания 一书中提出了一种“图形分类依据”型的谜题。谜题的规则很简单:现已按照某种依据把 12 张图片分成了左右两组(每组各 6 张),问依据是什么。在 Проблема Узнавания 的附录中, Bongard 自己出了 100 道题,并把它们依次编号为 1, 2, 3, …, 1

查看全文: http://www.udpwork.com/item/13308.html

+0  用三段 140 字符以内的代码生成一张 1024×1024 的图片

Tag: C语言 |  图形 | 比赛 | Uncategorized | 图片
admin 发于 2014年08月12日 04:54 | 点击: 2067 | 展开摘要
Kyle McCormick 在 StackExchange 上发起了一个叫做 Tweetable Mathematical Art 的比赛,参赛者需要用三条推这么长的代码来生成一张图片。具体地说,参赛者需要用 C++ 语言编写 RD 、 GR 、 BL 三个函数,每个函数都不能超过 140 个字符。每个函数都会接到 i 和 j 两个整型参数(0 ≤ i, j ≤ 1023),然后需要返回一个 0 到 255 之间的整数,表示位于 (i, j) 的像素点的颜色值。举个例子,如

查看全文: http://www.udpwork.com/item/12903.html

+0  趣题:寻找四个共圆的点

Tag:  图形 | 几何 | Uncategorized | 趣题
admin 发于 2014年08月12日 04:11 | 点击: 1393 | 展开摘要
5 张矩形的纸片和 6 张圆形的纸片散落在桌面上,如下图所示(其中一张矩形纸片被撕掉了一个角)。考虑所有露在外面的矩形顶点以及纸张边缘处的交点,你能否从中找出四个保证共圆的点?很简单,右下角那个绿色矩形的四个顶点就满足要求,因为矩形的四个顶点显然是共圆的。其实,在这个图里,还有另外三组满足要求的点,你能找到吗?

 

 

 

 

 

 

 

 

首先, A 、 B 、 C 、 D

查看全文: http://www.udpwork.com/item/12904.html

+0  子串复杂度、平衡 01 串与 Sturmian 串

Tag:  图形 | Uncategorized | 算法 | 组合数学 | 证明
admin 发于 2014年06月09日 03:34 | 点击: 1366 | 展开摘要
让我们先从两个小问题开始说起。第一个问题是,是否存在某个无限不循环的 01 串,使得对于任意一个正整数 n ,该 01 串中长度为 n 的子串都有且仅有 n + 1 种?

或许这个问题来得有些突然。让我们慢慢解释一下,这个问题是怎么来的。衡量一个 01 串的复杂程度有很多办法,比方说,我们可以去考察它的“子串复杂度”(subword complexity),即子串的种类有多丰富。我们用 pw(n) 来表示,在一个(有可能无限长的)数字串 w 当中,长度为 n 的子串一共有多

查看全文: http://www.udpwork.com/item/12606.html

+0  多边形外角和等于 360° 的一种直观解释

Tag: 动画 |  图形 | 几何 | Uncategorized | 证明
admin 发于 2014年04月08日 03:48 | 点击: 4426 | 展开摘要
来源:Mathematics Stack Exchange

查看全文: http://www.udpwork.com/item/12096.html

+0  趣题:证明所有乘积的总和与分拆的方式无关

Tag: 无穷 |  图形 | Brain Storm | 趣题 | 组合数学 | 极限 | 证明
Matrix67 发于 2012年10月31日 21:07 | 点击: 1326 | 展开摘要
    有 1000 枚硬币堆在一起。把它们任意分成两堆,并计算出这两堆的硬币数的乘积。然后,任意选择其中的一堆硬币,把它继续分成两个更小的堆,并计算出这两堆的硬币数的乘积。不断这样做下去,直到最后每堆都只剩一枚硬币为止。求证:把途中产生的所有乘积全部加在一起,结果是一个定值,它不随分法的改变而改变。

 

 

 

 

 

 

 

 

&nb

查看全文: http://www.udpwork.com/item/8506.html
|<<<1>>>| 一共1页, 6条记录